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Repeat Expansion–Detection Analysis of Telomeric
Uninterrupted (TTAGGG)n Arrays

To the Editor:
In humans, as in all vertebrates, telomeres are nucleo-
protein complexes at the ends of chromosomes and pri-
marily consist of tandemly repeated double-stranded
(TTAGGG)n hexamers, to which are bound various spe-
cific proteins. The telomeric TTAGGG repeats are rep-
licated by conventional DNA polymerases and by the
reverse transcriptase telomerase, which catalyzes the ad-
dition of new TTAGGG repeats to the 3′ ends of chro-
mosomes (de Lange 1995; Meyerson et al. 1997). The
replenishing of telomeric terminal repeats by telomerase
is required in order to compensate for the loss of these
sequences in incomplete replication of linear chromo-
somes during the S phase. As part of the aging process,
normal somatic cells undergo a progressive loss of
TTAGGG repeats, both in vitro and in vivo, which cor-
relates with lack of expression of telomerase in most
somatic cells (de Lange 1995). In transformed cell lines
and tumors, this loss is overcome by the up-regulation
of the putative human telomerase catalytic-subunit gene
(hEST2) and reactivation of telomerase, a process that
is stabilized further by the involvement of the human
telomeric repeat–binding factor, TRF1 (Meyerson et al.
1997; Nakamura et al. 1997; Van Steensel and de Lange
1997). However, recent data from telomerase knockout
mice suggest that the proposed involvement of telomer-
ase with tumorigenesis may be coincidental and of no
functional significance (Blasco et al. 1997). In telomer-
ase-negative immortal cell lines and tumors, other, still-
unidentified mechanisms must operate to provide for
telomere maintenance and elongation (Bryan et al. 1995,
1997). In human cells, functional telomeres have been
found to form at previously interstitial sites almost ex-
clusively after transfection with TTAGGG repeats (and,
more rarely, after transfection with TTAGGG-related
heterologous sequences), thus demonstrating that there
are stringent sequence requirements for the formation
of human telomeres (Hanish et al. 1994).

Uninterrupted telomeric TTAGGG-repeat arrays in

somatic cells currently are believed to be in the range of
∼10-kb or more (de Lange et al. 1990; de Lange 1995).
The (TTAGGG)n-repeat maximum length has been es-
timated by physical mapping strategies, on the basis of
measurement of genomic DNA restriction-fragment
lengths after Southern blotting and hybridization either
with a (TTAGGG)n probe or by chromosome-specific
subtelomeric probes (Brown et al. 1990; de Lange 1995;
Notaro et al. 1997) and, more recently, by using quan-
titative FISH (Martens et al. 1998). Accurate measure-
ments by cloning and sequencing have been hampered
by the high instability of the telomeric (TTAGGG)n and
have failed to show any clone containing an unadulter-
ated (TTAGGG)n array 1540 bp (de Lange et al. 1990).
We have used the repeat expansion–detection (RED) as-
say (Schalling et al. 1993), originally described for de-
tection of long trinucleotide repeats in the human ge-
nome, to measure maximum TTAGGG-repeat lengths
and to monitor the relative stability of the repeats in
DNA templates from both blood and transformed cell
cultures. The RED assay uses genomic DNA as a tem-
plate for the annealing and ligation of repeat-specific
oligonucleotides, does not require flanking sequence de-
termination or single-copy probes, and detects the long-
est repeat of a given type present in the genome. The
RED method is highly reproducible in our hands (Sirugo
and Kidd 1995; Sirugo et al. 1997; also see Epicentre
Forum Website). We have analyzed DNA templates ex-
tracted from whole blood of 21 northern Europeans, for
the maximum length of uninterrupted TTAGGG repeats,
and have found that the longest uninterrupted
(TTAGGG)n arrays in such templates ranged from ∼220
bp to a maximum length of ∼480 bp, well below the
several-kilobase range described in the literature (de
Lange 1995) (fig. 1 and table 1). This range was con-
served (and the results were repeatable) in all samples
analyzed, suggesting that this is the (TTAGGG)n maxi-
mum-length range that normally is present, in vivo, in
human leukocytes.

Unlike the indirect physical-mapping strategies used
for measuring the maximum length of the telomeric hex-
amer, the RED method gives a direct measure of the
actual size of the longest uninterrupted TTAGGG repeat
in the genome. The observed (TTAGGG)n maximum
length of ∼480 bp cannot be explained on the basis of
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Table 1

(TTAGGG)n Maximum Lengths in DNA from
Blood and EBV Cell Lines

SAMPLE

NO. OF LIGATED

(TTAGGG)9 REPEATS

IN DNA FROM

Blood
EBV-Transformed

Cell Lines

Paired samples:a

1 7 13b

2 6 8
3 7 13 b

4 9 11
5 5 10
6 8 12
7 7 13b

Unpaired samples:
8 9
9 6
10 8
11 6
12 6
13b 7
14 4
15 6
16 5
17 6
18 6
19 6
20 5
21 6
24 13b

25 9
26 9
27 13b

28 10

a (TTAGGG)n maximum length in templates
extracted from blood is always elongated after
EBV transformation, with expansions ranging
from “moderate” (pairs 2, 4, and 5 ) to “large”
or “very large” (pairs 1, 3, 6, and 7). By a simple
one-direction sign test, the probability of all seven
transformed cell lines being elongated by chance
is significant ( ).P ! .01

b Arbitrary upper size value for very long but
nonmeasurable ligated ladders.

Figure 1 RED of (TTAGGG)n arrays, performed with a
(TTAGGG)9 oligonucleotide and 5 mg of DNA template in the con-
ditions described by Sirugo and Kidd (1995; also see Epicentre Forum
Website). Reaction products were fractionated by denaturing PAGE
on 6% gels (20:1 acrylamide:bisacrylamide), were transferred onto a
nylon membrane, and were detected by hybridization with a radio-
labeled (CCCTAA)5 probe. Lanes 1B–6E correspond to RED in DNA
from blood/EBV-transformed lymphoblast pairs from six northern
Europeans (Sirugo et al. 1997). An additional, seventh lymphoblast
pair was analyzed (not shown). “B” and “E” denote, respectively,
blood and EBV-cell-line DNA templates for each pair. The number of
ligated (TTAGGG)9 for each band is indicated in the figure, along with
the corresponding size (in bp). All EBV-cell-line templates have been
used for a previously published RED-based study of CTG/CAG-repeat
maximum length in populations (Sirugo et al. 1997). Short CTG/CAG
arrays were detected by RED in five of the seven lymphoblastoid cell
samples (lanes 2E–6E) (Sirugo et al. 1997). We therefore can conclude
that the repeat expansions detected in this study are specific for
(TTAGGG)n arrays, after EBV transformation. One of these individ-
uals (lanes 1B and 1E) was shown to carry a large CTG/CAG-trinu-
cleotide–repeat expansion in templates from both blood and the EBV
cell line. This rules out the possibility that the short (TTAGGG)9 ligated
ladders in blood are determined by poor quality of the DNA template
with respect to the EBV-cell-line DNA. Fifteen additional northern
European individuals also were analyzed; all carry (TTAGGG)n max-
imum lengths of 200–450 bp in their blood-extracted genomic DNAs
(not shown) and provide confirmation that this is the normal
(TTAGGG)n size range in this population sample.

aging. According to previously published reports (Vaziri
et al. 1993), telomere shortening in leukocytes that is
due to senescence would correlate with a size reduction
of telomeric restriction fragments, from ∼10 to ∼5 kb,
implying a (TTAGGG)n maximum length much larger
than the ∼480 bp observed in our study. It is therefore
likely that the ∼10-kb, large regions so far believed to
contain unadulterated (TTAGGG)n are, in fact, com-
posed of shorter blocks of uninterrupted arrays inter-
calated with other motifs every 200–500 bp (Allshire et
al. 1989).

From seven of the above-mentioned blood samples,
Epstein-Barr virus (EBV)–transformed cell lines were es-
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Figure 2 RED of (TTAGGG)n arrays, using 100 pg (lane 1) and
10 pg (lane 2) of a synthetic polymer generated by PCR with
(TTAGGG)9/(CCCTAA)5 primers in the absence of DNA template. The
PCR was performed in a 20-ml final volume, with 200 mM of each
dNTP, 2 M Betaine, 5% dimethylsulfoxide, 2 ml of 10 # Klentaq
buffer, and 0.2 ml of KlentaqLA-16 enzyme mix (15:1 Klentaq1:Pfu
DNA polymerase) (Barnes 1994; Baskaran et al. 1996). Samples were
taken through 40 cycles of 95�C for 1 min, 37�C for 1 min, and 72�C
for 6 min, with a 3-s increase per cycle. The reaction product was run
on a 1% agarose gel and was visualized, by ethidium bromide staining,
as a smear with a size range of 1–20 kb. PCR products in the 5–8-kb
range were gel purified and used as template in a RED reaction with
(TTAGGG)9 oligonucleotides. Decreasing amounts of synthetic tem-
plate yield an equally long ladder but one that is of lower relative
intensity (lanes 1 and 2). A control reaction in the absence of DNA
template is shown in lane 3, demonstrating that the ladder does not
result from self-annealing of (TTAGGG)9 oligonucleotides. Lane 4
shows results for a RED replicate on a DNA template extracted from
blood (sample 3B in fig. 1), demonstrating that the shorter length
detected in DNA from whole blood is consistently reproduced across
reactions.

tablished. The RED analysis of DNA templates extracted
from these cell lines clearly demonstrated that the
(TTAGGG)n arrays were systematically expanded when
compared with the (TTAGGG)n maximum length de-
tected in DNA extracted from whole blood (fig. 1 and
table 1), with maximum lengths in the range of 450–700
bp (or more). Five additional DNAs from EBV-trans-
formed cell lines of other northern European subjects
also showed maximum lengths in the same range, of
450–700 bp (or more). RED analysis of control samples
from three different mice strains (DNAs extracted from
spleen) revealed the presence of (TTAGGG)n arrays 1700
bp (not shown), in agreement with the observation of
ultralong telomeres in mouse (Zijlmans et al. 1997). A
very long (up to the nonresolving area of the gel)
(TTAGGG)n ladder also was detected when the RED
method was tested on a 5–8-kb synthetic (TTAGGG)n /
(CCCTAA)n polymer generated by PCR (fig. 2). Taken
together, these data rule out the possibility that the
“short” (TTAGGG)n maximum lengths detected by RED
in templates from whole blood are artifacts due to the
inability of the ligation process to proceed beyond
secondary structure (e.g., intrastrand hairpins) of
(TTAGGG)n arrays.

Overall, the maximum (TTAGGG)n length in the 21
samples from blood was found to be significantly shorter
(200–500 bp) than the maximum length detected in the
12 EBV cell lines (Mann-Whitney test; ). TheP ! .001
(TTAGGG)n-array expansions are in accord with telo-
mere lengthening in transformed cell lines (de Lange
1995; Meyerson et al. 1997; Van Steensel and de Lange
1997) and largely consistent with the reported hEST2
up-regulation/telomerase reactivation in transformed
cell cultures, although we cannot exclude the possibility
that they originate from DNA polymerase slippage or
by chromosomal recombination following EBV trans-
formation.

It has been stressed that “in considering telomere dy-
namics, it is clearly important to establish the length of
the (TTAGGG)n repeat array” (de Lange 1995, p. 266)
and that the instability of (TTAGGG)n might have “some
mechanistic similarity to the instability of short tandem
repeats that produce variable microsatellite or minisa-
tellite loci, and the instability of trinucleotide repeats
that underlie some human genetic diseases” (Kipling
1995, p. 196). It is worthwhile to hypothesize that the
interruption of the unadulterated (TTAGGG)n arrays
every 200–500 bp in DNA templates from whole blood
may be important for the maintenance of repeat stability,
whereas the loss of interruption could be associated with
instability and expansion, as part of a dynamic process
perhaps not dissimilar to that resulting in expansion mu-
tation of some trinucleotide repeats (Ashley and Warren
1995; Gordenin et al. 1997). The RED method could
be used to monitor telomere stability in transformed cell
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lines and tumors or to test the effect of genes involved
in telomere maintenance or DNA repair after transfec-
tion in cell lines with abnormally short telomeres. In
conclusion, the results generated by the RED method
offer a new perspective on (TTAGGG)n maximum length
and on the relative stability of this telomeric hexamer,
both in vitro and in vivo.
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